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Integrin-mediated cell adhesion regulates a vast number

of biological processes including migration, survival and

proliferation of cells. It is therefore not surprising that defects in

integrin function are often rate-limiting for development and

profoundly affect the progression of several diseases. The

functions of integrins are mediated through the recruitment of

cytoplasmic plaque proteins. One of these is integrin-linked

kinase, which connects integrins to the actin cytoskeleton and

transduces signals through integrins to the extracellular matrix

and from integrins to various subcellular compartments.
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Introduction
Cell adhesion is mediated by multiprotein complexes

composed of adhesion receptors, extracellular matrix
edirect.com
(ECM) proteins and cytoplasmic plaque proteins. The

cell adhesion receptors determine the specificity of the

cell–cell or the cell–ECM interaction and recruit cyto-

plasmic plaque proteins to the cell adhesion site. The

cytoplasmic plaque proteins transduce signals initiated

by the adhesion receptor, link the adhesion receptors to

the cytoskeleton and regulate the functional properties of

the adhesion receptors themselves.

Integrins are a large family of adhesion receptors com-

prising >20 members that mediate highly dynamic cell–

cell and cell–ECM interactions. The association and the

release of integrin–ligand interactions are achieved by the

ability of integrins to adopt different conformations. The

active conformation is triggered by intracellular signals

and cytoskeleton assembly and results in ligand binding,

integrin clustering and recruitment of cytoplasmic plaque

proteins into integrin attachment sites called focal adhe-

sions (FAs) [1,2]. One protein that plays a central role in

integrin activation and signaling is integrin-linked kinase

(ILK) [3]. ILK is composed of three structurally distinct

domains: three ankyrin repeats near the N terminus (a

fourth ankyrin repeat was identified in human ILK but

lacks well-conserved residues), a short linker sequence,

and a kinase domain at the C terminus. The linker

domain, together with sequences from the N terminus

of the kinase domain, shares some similarities with pleck-

strin homology (PH) domains (Figure 1).

In the present review we will discuss the functional

properties of ILK, which are governed by ILK’s interac-

tion partners and kinase activity. The first part of this

review summarizes biochemical and cell biological stu-

dies of ILK and the second part deals with in vivo
experiments from invertebrates and mice.

Cell biology and biochemistry of ILK
Overexpression of ILK as well as loss or reduction of ILK

expression in cells profoundly affects their morphology

and function. The most striking changes are impaired

cell spreading, abnormal cell adhesion to and assembly

of ECM proteins, delayed formation of FAs and altered

cell proliferation [3–6,7��]. How can these defects be

explained? Important hints have come from the identi-

fication of ILK binding partners (Table 1), from their

mode of interaction with ILK and from the identification

of substrates for the ILK kinase domain (Table 2).

ILK — a platform for actin regulatory proteins

Almost all adaptor proteins that bind either directly or

indirectly to ILK regulate the actin cytoskeleton and
Current Opinion in Cell Biology 2004, 16:565–571
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Figure 1

ILK binds Pinch and parvin and this ternary complex subsequently locates to the plasma membrane through the interaction with the cytoplasmic

domain of activated b1 and b3 integrin subunits as well as unknown FAs component(s). Binding to phospholipids results in the activation of

the kinase function of ILK, which in turn leads to the phosphorylation of GSK3b and PKB/Akt. Finally, ILK can recruit several adaptor proteins,

which are able to regulate actin dynamics or actin attachment to FAs. The molecules presented in Figure 1 are not drawn to scale. AKT, protein

kinase B/Akt; RTK, receptor tyrosine kinase; WASP, Wiskott-Aldrich syndrome protein.
hence could be responsible for the shape change and FA

dysfunction associated with altered ILK expression (Fig-

ure 1). Pinch (‘particularly interesting new cysteine-his-

tidine-rich protein’) was the first interactor to be

identified [8]. Pinch-2, a Pinch homologue, was subse-

quently identified in mice and humans [9,10]. They are

both composed of five LIM domains and a nuclear

localization signal (NLS) at the C terminus. The first

LIM domain binds the first ankyrin repeat of ILK. The

interaction has been well-characterized using structural

[11], biochemical and cell biological approaches [8,9].

The fourth LIM domain of Pinch-1 was shown to bind
Table 1

ILK interacting proteins, the location of their binding site on

ILK and the method(s) used to confirm their interaction.

Interactor Domain Detection Reference

b1 integrin C terminus Y2H/IP [3]

b3 integrin C terminus IP [3,61]

ILKAP N terminus Y2H/IP [62]

Mig-2/Kindlin-2 C terminus Y2H [21��]

a-parvin C terminus Y2H/IP [18]

b-parvin C terminus Y2H/IP [19]

paxillin C terminus IP [15]

Pinch-1 N terminus Y2H/IP/CC [8,11]

Pinch-2 N terminus IP [9]

PIP3 PH — [26]

CC, co-crystallization; IP, co-immunopreciptiation; Y2H,

yeast-two-hybrid assay
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with very low affinity to the SH2/SH3 adaptor protein

Nck2, which in turn interacts with growth factor receptors

and recruits a large number of proteins, including actin

modulators such as Dock180 (180-kDa protein down-

stream of CRK) and the p21-activated serine/threonine

kinase (PAK) [8,12,13]. Whether Pinch-1 interacts with

Nck2 in vivo is not clear. Since mice and cells lacking

Nck2 are normal [14] but mice lacking Pinch-1 die during

implantation (F Stanchi and R Fässler, unpublished) this

interaction does not seem to be crucial for Pinch-1 func-

tion. It has been shown that Pinch-2 can translocate into

the nucleus [9]. Its role there, however, is unclear.
Table 2

Putative targets of the ILK kinase activity and the amino

acid residue(s) phosphorylated by ILK.

Target Phosphorylation site Reference

ILK (Ser343) [35,40]

b1 integrin (Ser785) [3]

b3 integrin — [61]

b-parvin — [19]

GSK-3b (Ser9) [26,62]

PKB/Akt (Ser473) [26]

MLC-20 (Thr18/Ser19) [42]

MYPT-1 (Thr695, Thr495/Thr709) [43,44]

CPI-17 (Thr38) [45]

PHI-1 (Thr57) [45]

MYPT1, myosin phosphatase target subunit isoform 1.

www.sciencedirect.com
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A search for paxillin binding proteins showed that the

kinase domain of ILK contains sequences resembling a

paxillin binding subdomain (PBS) motif, which firmly

binds paxillin [15]. The ILK–paxillin interaction is neces-

sary but not sufficient to recruit ILK into FAs, where the

complex may modulate the function of other paxillin

binding proteins such as vinculin,a-actinin, talin and FAK.

Several laboratories have simultaneously shown that par-

vins, a new family of F-actin binding proteins, bind the

kinase domain of ILK [16–19]. The parvins comprise

three members (a-parvin or actopaxin or CH-ILK bind-

ing protein; b-parvin or affixin; and g-parvin) and are

composed of two calponin homology (CH) domains that

bind ILK, paxillin and F-actin. b-parvin was shown to

interact with the guanine nucleotide exchange factor a-

PIX (PAK-interactive exchange factor-a), which may

activate Rac1 and Cdc42 [20]. Parvins are found in FAs

and apparently do not colocalize to stress fibers [16,17].

An important future task will be to map the binding sites

of ILK, paxillin and F-actin on the CH domains and to

test whether their binding occurs simultaneously or is

mutually exclusive.

A recent paper identified an additional ILK binding

partner in Caenorhabditis elegans, termed UNC-112

[21��]. UNC-112 contains a FERM domain [22] and is

important for the recruitment of the ILK orthologue, Pat-

4, to muscle attachment sites. The mammalian ortholo-

gue of UNC-112, Mig-2/Kindlin-2, was shown to bind the

LIM-domain-containing adaptor protein migfilin, which

in turn binds filamin [23�]. It will be interesting to see

whether Mig-2/Kindlin-2 also binds ILK in mammalian

cells and whether this interaction modulates the function

of filamin, which is mutated in a variety of human dis-

eases.

ILK, Pinch and parvin — a ternary complex required

for stability and focal adhesion localization

The association of ILK, Pinch and parvin into a ternary

protein complex happens before their recruitment into

FAs [24�] and serves at least two purposes: it stabilizes the

individual proteins and targets the individual components

into FAs [24�,25�]. Loss of ILK expression in cells leads to

the degradation of Pinch and parvin and, conversely, loss

of Pinch expression diminishes ILK and parvin levels

[25�]. The degradation can be prevented either by inhi-

biting the proteasome [25�] or by expressing short N-

terminal fragments of ILK (the ankyrin repeats) in ILK-

deficient cells (C Grashoff, R Fässler, unpublished data)

or Pinch (the first LIM domain) in Pinch-deficient cells

(F Stanchi, R Fässler, unpublished data). Their recruit-

ment into FAs, however, cannot be rescued with these

fragments. These results support the notion that ILK and

Pinch must have binding partner(s) that facilitate FA

targeting. Possible candidates for ILK targeting partners

are integrins, paxillin and Mig-2/Kindlin-2. It has been
www.sciencedirect.com
shown that nematodes lacking b integrin fail to localize

ILK to cell attachment sites [21��]. Mammalian cells may

have a similar requirement for b integrin to localize ILK,

but this has not been shown yet with cell lines lacking

either b1 or b3 or both integrin subunits. Paxillin binds

ILK via its N-terminal leucine-rich motifs and targets to

FAs via the C-terminal LIM domains. Mutation in the

paxillin binding site of ILK prevents ILK/Pinch/parvin

recruitment to FAs [15]. Mig-2/Kindlin-2 could also play a

role since the worm orthologue UNC-112 is essential for

localization of Pat-4/ILK to integrin-containing attach-

ment sites [21��]. No candidate binding partners are

currently known that could promote recruitment of Pinch

into FAs.

The dependence of ILK, Pinch and parvin stability on

the formation of a ternary complex has implications for

the interpretation of overexpression experiments. Accu-

mulation of ILK in the cytoplasm of ILK-overexpressing

cells may cause a partial depletion of Pinch and parvin

from FAs, resulting in an impaired FA function. This

could explain why cells either lacking [7��] or overex-

pressing ILK [3] have similar phenotypes: they both show

a rounded morphology and have decreased adhesive

properties.

The kinase activity of ILK

Despite the sequence differences between the ILK

kinase domain and other protein kinases (important resi-

dues in the activation loop of the kinase are not con-

served) the similarity was immediately recognized and

investigated [3]. Initial studies showed that GST-tagged

ILK purified from bacteria or mammalian cells could

phosphorylate serine and threonine residues in peptides

representing the b1 integrin tail, and model substrates

such as myelin basic protein [3].

ILK kinase activity took center stage when it was sug-

gested to be directly associated with cell proliferation,

tumor growth and metastasis [4,26–29]. On the one hand,

overexpression of ILK in cells results in anchorage-

independent cell cycle progression [5] and epithelial-

to-mesenchymal transition (EMT) of non-tumorigenic

as well as tumorigenic epithelial cells [4,29]. Inhibition

of ILK kinase activity, on the other hand, suppresses cell

growth in culture as well as growth of human colon

carcinoma cells in SCID mice [30]. Several lines of

experimental evidence suggest that these phenotypes

are largely attributed to enhanced ILK kinase activity

and phosphorylation of GSK3b and PKB/Akt [26], two

key enzymes involved in a diverse array of cell functions

including cell proliferation, survival and insulin responses

[31,32]. ILK-dependent phosphorylation of GSK3b in

epithelial cells downregulates GSK3b kinase activity

[26]. This in turn is associated with reduced E-cadherin

expression, enhanced AP1 activity and increased b-cate-

nin–Lef/Tcf activity [4,33], which induces the expression
Current Opinion in Cell Biology 2004, 16:565–571
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of cell-cycle-promoting genes such as cyclins and c-myc

[5,34]. The reduced E-cadherin expression could be due

to a direct effect of the b-catenin-Lef/Tcf complex on

E-cadherin gene expression [4]. Alternatively, ILK can

reduce E-cadherin levels indirectly by triggering snail

expression, which in turn represses E-cadherin gene

expression [30].

Full activation of PKB/Akt requires PIP3-dependent

phosphorylation of two residues: Thr308 and Ser473

[32]. Whereas PDK-1 (3-phosphoinositide-dependent

kinase 1) phosphorylates Thr308, ILK has been identified

as ‘PDK-2’, which phosphorylates Ser473 via a direct

interaction at the plasma membrane [26,35]. Besides

possessing a kinase activity, ILK fulfils other require-

ments of a PDK2, including PIP3 binding and regulation

of its activity by PI3K (phosphatidylinositol-3-kinase) or

PTEN (protein tyrosine phosphatase and tensin homo-

log) [26,27]. However, some doubts about ILK’s kinase

activity arose when it was reported that it has no Ser473

phosphorylation activity [36,37�]. These doubts were

reinforced by genetic studies in invertebrates and mice

that demonstrated normal Ser473 phosphorylation in the

absence of ILK [7��,21��,38]. Loss-of-function mutations

of ILK in worms and flies show no defects that can be

explained by impaired PKB/Akt activity, but develop

severe muscle defects that are fully rescued when differ-

ent kinase-dead versions of ILK are expressed [21��,38].

Similarly, fibroblasts with or without the ILK gene phos-

phorylate Ser473 to a similar extent following insulin or

PDGF stimulation [7��], and neither chondrocytes nor

keratinoyctes change their steady-state Ser473 phosphor-

ylation after ILK gene ablation in vivo [39] (T Sakai and

R Fässler, unpublished). These findings convincingly

demonstrate that ILK — even if it has Ser473 phosphor-

ylation activity — is not the only PDK2. These findings,

however, do not exclude the possibility that ILK med-

iates the phosphorylation of PKB/Akt and other target

proteins in an indirect manner, for example by recruiting a

kinase or inhibiting a phosphatase [37�,40]. Support for

such a notion also comes from gene ablation experiments.

Monocytes lacking ILK expression show reduced Ser473

phosphorylation [41�]. Similarly, ILK-null fibroblasts,

which respond normally to insulin treatment, fail to

maintain Ser473 phosphorylation levels to the same

extent as normal cells upon PDGF treatment [7��].
Furthermore, they display a slightly reduced steady state

level of Ser473 phosphorylation under normal culture

conditions (T Sakai and R Fässler, unpublished).

Other targets of the ILK kinase activity (Table 2) are b-

parvin [19], the regulatory myosin light chain (MLC) [42],

and MLC phosphatase [43,44] and its regulators CPI-17

(protein-kinase-C-dependent phosphatase inhibitor of 17

kDa) and PHI-1 (phosphatase holoenzyme inhibitor 1)

[45]. The significance of their phosphorylation, however,

is not clear.
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Since ILK regulates so many essential cellular functions it

is important to settle the debate on ILK’s kinase activity.

Solving the structure of the ILK kinase domain will be

very informative, as will the analysis of mice carrying

‘kinase-dead’ versions of the ILK gene and the identifi-

cation of PDK2(s). In addition to these new experimental

approaches, new reagents to probe ILK’s function will be

useful. The E359K mutation in ILK, for example, was

originally found to lack kinase activity and was therefore

used in many studies as a ‘kinase-dead’ version of ILK. It

turns out, however, that the mutation does not affect

kinase activity but rather impairs paxillin binding and FA

targeting [46�]. Furthermore, a polyclonal anti-ILK anti-

serum that recognizes a 59 kDa band of unknown origin

instead of the 52 kDa sized ILK has been used in a large

number of studies and could potentially have given mis-

leading results [3,6,47].

Studies of ILK/Pinch/parvin in invertebrates
and mice
The attachment sites of the body wall muscle to the

hypodermis of C. elegans are called dense bodies and

resemble FA-like structures. They contain b-pat-3 integ-

rin (the only b integrin subunit in C. elegans), pat-4/ILK,

UNC-97/Pinch, pat-6/parvin and UNC-112/Mig-2 and

loss-of-function alleles of these proteins lead to severe

adhesion defects manifesting as muscle detachment and

embryonic lethality [21��,22,48,49�]. The loss-of-function

studies also reveal that b-pat-3 integrin is required to

recruit ILK to the plasma membrane [21��] and that

integrins are partially mislocalized in the absence of

pat-4/ILK [21��] or UNC-112/Mig-2/Kindlin-2 [22]. A

recent report showed that the Zn2+-finger-containing

transcription factor UNC-98 can bind UNC-97/Pinch

and is also required for muscle attachment to the body

wall [50�]. UNC-98 shuttles between dense bodies and

the nucleus where it binds DNA and probably regulates

gene transcription. So far an ortholog of the UNC-98 gene

has not been identified in flies or mammals.

Drosophila melanogaster has a similar requirement for bPS

integrins, ILK and Pinch in muscle cell attachment

[38,51��]. Interestingly, loss of bPS integrin function in

flies leads to detachment of ECM from the cell mem-

brane, while loss of ILK function leads to detachment of

F-actin from the plasma membrane, indicating an impor-

tant role for ILK in actin stabilization at integrin attach-

ment sites [38]. The severe muscle defect in worms or

flies lacking ILK can be fully rescued by the expression

of different kinase-dead ILK transgenes, supporting the

idea that ILK functions as an important adaptor protein,

independent of its kinase activity [21��,38].

The loss of ILK expression in mice leads to peri-implan-

tation lethality similar to what is seen upon loss of b1

integrin expression [7��,52]. The cause of the develop-

mental arrest was studied in embryoid bodies (EBs)
www.sciencedirect.com
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[7��,53,54]; these studies showed that b1-integrin-mutant

EBs are unable to deposit a basement membrane (BM),

while ILK-null EBs produce a BM but fail to polarize the

epiblast (a primitive tissue that will give rise to all three

germ layers). Since addition of laminin to b1-integrin-null

EBs rescues the BM assembly phenotype and allows

epiblast development it is likely that b1 integrin and

ILK function independently during the peri-implantation

period [54].

Conditional loss of ILK in chondrocytes leads to skeletal

growth retardations characterized by abnormal chondro-

cyte shape and decreased proliferation in vivo [39,55], and

diminished chondrocyte spreading on ECM and reduced

stress fiber formation in vitro [39]. Similar, albeit more

severe, defects are also observed in mice with a chon-

drocyte-specific deletion of the b1 integrin gene [56],

indicating that b1 integrins and ILK are both required for

normal chondrocyte function. The mechanism leading to

reduced chondrocyte proliferation in the absence of ILK

expression is not understood; altered phosphorylation of

PKB/Akt or GSK-3b was excluded [39]. A conditional

deletion or reduction of ILK gene expression in macro-

phages, on the other hand, results in a strong inhibition

of the PKB/Akt-Ser473 phosphorylation associated with

apoptosis [41�], indicating that ILK kinase activity might

differ depending on the cell type.

Overexpression of ILK in mammary glands of transgenic

mice leads to tumor formation [29]. Similarly, pharma-

cological inhibition of ILK in prostate carcinoma cells

causes them to proliferate much less rapidly in vivo
[57��]. These findings can principally be explained by

the oncogenic activities of ILK (activation of PKB/Akt,

inhibition of GSK-3b, and stimulation of AP-1, NF-kB

and b-catenin–Lef/Tcf transcription factors) and its abil-

ity to promote tumor angiogenesis. ILK promotes blood

vessel invasion into tumors in two ways: ILK induces

HIF1a-dependent VEGF expression in tumor cells,

which in turn regulates endothelial cell migration and

proliferation in an ILK kinase-dependent manner [57��].
The importance of ILK for tumor pathology is under-

scored by the fact that a large number of malignant tumors

display increased ILK levels and kinase activity [58], and

in some tumor types ILK levels correlate with tumor

grade [59,60].

Outlook
ILK has many interesting functional facets and work in

both invertebrates and mice has revealed an essential role

for ILK in development. There is a general consensus

that ILK plays a central role in the reorganization of the

F-actin cytoskeleton and its attachment to FAs. The role

of ILK as a kinase is more controversial. Since a large

number of ILK functions rely on kinase activity, includ-

ing EMT, proliferation and VEGF expression, this con-

troversy should urgently be settled. This can be assisted
www.sciencedirect.com
by solving the structure of the ILK kinase domain, using

continued genetic approaches or the well-defined anti-

bodies that have become available over the past few years.

As has already been done in flies and worms, it should be

tested in mice whether point mutations in the kinase

domain of ILK impair the function of the molecule.

An important future task will be to identify the signals

that trigger assembly of the ILK/Pinch/parvin complex, to

identify the proteins that recruit the core complex into

FAs, and to establish how the core complex modulates

integrin functions and regulates actin dynamics. The

availability of cell lines and mice that lack ILK and

the progress in proteomics and live cell imaging should

together help to dissect these mechanisms and to clarify

ILK’s role in integrin-mediated cell adhesion.
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Integrin-linked kinase regulates chondrocyte shape and
proliferation. EMBO Rep 2003, 4:432-438.

40. Lynch DK, Ellis CA, Edwards PA, Hiles ID: Integrin-linked kinase
regulates phosphorylation of serine 473 of protein kinase B by
an indirect mechanism. Oncogene 1999, 18:8024-8032.

41.
�

Troussard AA, Mawji NM, Ong C, Mui A, St -Arnaud R, Dedhar S:
Conditional knock-out of integrin-linked kinase demonstrates
an essential role in protein kinase B/Akt activation. J Biol Chem
2003, 278:22374-22378.

Conditional deletion of ILK in monocytes/macrophages results in reduced
phosphorylation of Ser473 of PKB/Akt, indicating that the Ser473 activity
of ILK may occur in a cell-type-dependent manner.
www.sciencedirect.com



Integrin-linked kinase Grashoff, Thievessen, Lorenz, Ussar and Fässler 571
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